1,262 research outputs found

    Robust Control Charts for Time Series Data

    Get PDF
    This article presents a control chart for time series data, based on the one-step- ahead forecast errors of the Holt-Winters forecasting method. We use robust techniques to prevent that outliers affect the estimation of the control limits of the chart. Moreover, robustness is important to maintain the reliability of the control chart after the occurrence of alarm observations. The properties of the new control chart are examined in a simulation study and on a real data example.Control chart;Holt-Winters;Non-stationary time series;Out- lier detection;Robustness;Statistical process control

    Robust Forecasting of Non-Stationary Time Series

    Get PDF
    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estimator. An additional advantage of the MM-estimator is that it provides a robust estimate of the local variability of the time series.Heteroscedasticity;Non-parametric regression;Prediction;Outliers;Robustness

    Robust Control Charts for Time Series Data

    Get PDF
    This article presents a control chart for time series data, based on the one-step- ahead forecast errors of the Holt-Winters forecasting method. We use robust techniques to prevent that outliers affect the estimation of the control limits of the chart. Moreover, robustness is important to maintain the reliability of the control chart after the occurrence of alarm observations. The properties of the new control chart are examined in a simulation study and on a real data example.

    Robust Forecasting of Non-Stationary Time Series

    Get PDF
    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estimator. An additional advantage of the MM-estimator is that it provides a robust estimate of the local variability of the time series.

    Daily Exchange Rate Behaviour and Hedging of Currency Risk

    Get PDF
    Exchange rates typically exhibit time-varying patterns in both means and variances. The histograms of such series indicate heavy tails. In this paper we construct models which enable a decision-maker to analyze the implications of such time series patterns for currency risk management. Our approach is Bayesian where extensive use is made of Markov chain Monte Carlo methods. The effects of several model characteristics (unit roots, GARCH, stochastic volatility, heavy tailed disturbance densities) are investigated in relation to the hedging decision strategies. Consequently, we can make a distinction between statistical relevance of model specifications, and the economic consequences from a risk management point of view. The empirical results suggest that econometric modelling of heavy tails and time-varying means and variances pays off compared to a efficient markets model. The different ways to measure persistence and changing volatilities appear to strongly influence the hedging decision the investor faces.

    Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer.

    Get PDF
    Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor-, progesterone receptor- or human epidermal growth factor 2 receptor-positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient-derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer
    corecore